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Hydrodynamic interactions in microphase separation of block copolymer films:
Stability and spirals

Y. Shiwa
Statistical Mechanics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

~Received 3 September 1999; revised manuscript received 27 October 1999!

Effects of hydrodynamic interactions in the formation of lamellar patterns in thin block copolymer films are
studied. We derive the phase diffusion equation, and the stability analysis reveals the development of the
skewed-varicose instability. Moreover, we predict by means of numerical simulations that the hydrodynamic
flow induces the spiral and target patterns.

PACS number~s!: 61.41.1e, 47.20.2k, 47.54.1r, 64.60.Cn
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In the field of block copolymers~BCPs!, the existence of
lamellar patterns has been abundantly studied and is
fairly well understood@1#. However, the growth kinetics o
the formation of such patterns is much less understood e
theoretically or experimentally. This situation bears clo
analogies with the convective~roll or stripe! pattern forma-
tion in a Rayleigh-Be´nard~RB! system@2#. For example, the
physical mechanism underlying an apparent dynamical s
ing regime has not been clearly identified in either syste

In fact, the analogy is not just superficial in these tw
pattern forming systems, but similar kinetic behaviors can
expected in view of the similarity between the equatio
governing the dynamics of lamellae and the Sw
Hohenberg model of RB convection. As examples:~i! the
dynamical growth of the characteristic length scale in b
systems is described by the same growth exponents@3#; ~ii !
the stability of a lamellar structure and a convective r
gives rise to a common phenomenology@4#. In this paper we
explore effects of hydrodynamic interactions in micropha
separation of BCP, showing another fascinating connec
between the two systems. We predict the appearanc
skewed-varicose instabilities and spiral-target patterns in
BCP films by means of both analytical and numerical inv
tigations.

We consider only anA-B diblock copolymer with equal-
length subchains, in which an ordered layered phase w
alternatingA and B rich domains~lamellae! is formed. The
model to describe its dynamics is the following tim
dependent Ginzburg-Landau~TDGL! equations@5#:

]c

]t
5L¹2

dH$c%

dc
2~v•“ !c, ~1!

r0S ]

]t
2n¹2D v52T•Fc“dH$c%

dc G . ~2!

Here c(r ,t) is the scalar order parameter at a space t
point (r ,t) chosen to be the local monomer concentrat
difference ofA and B species. The free energy function
H$c% is given by
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H$c%5E dr S 2
t

2
c21

u

4
c41

K

2
~“c!2D

1
B

2E E drdr 8c~r ,t !G~r ,r 8!c~r 8,t !, ~3!

where G is the Green’s function for the Laplace equatio
¹ r

2G(r ,r 8)52d(r2r 8). The H$c% is essentially the effec-
tive Hamiltonian first derived by Leibler and subsequen
discussed by Ohta and Kawasaki@6#. The positive constants
L,t,u andK are phenomenological parameters, andB(.0)
represents a long-range repulsive interaction and is inhe
in the microphase separation. The second term on the ri
hand side of Eq.~1! represents the fluid motion. The velocit
field v(r ,t) is induced by the hydrodynamic interactions e
tablished by the spatially nonuniform distribution of chem
cal potential, and is assumed to satisfy the incompressib
condition “•v50. Accordingly the operatorT appears in
Eq. ~2! to select a transverse component of the vector fiel
is applied to; ther0 andn are the monomer density and th
kinematic viscosity. It is more convenient to take the curl
Eq. ~2! to consider the vorticity equation (V[“3v),

r0S ]

]t
2n¹2DV5“

dH$c%

dc
3“c. ~4!

Under the assumption that the time scale ofv is much
shorter than that ofc ~the so-called ‘‘adiabatic limit’’ or
‘‘passive vorticity case’’!, we set] t50 in ~Eq. 4! as a first
good approximation. As a second simplification, which
specific to the thin BCP films, we follow Zippelius-Siggi
and Manneville@7# to replace the three-dimensional Lapla
ian on the left-hand side~LHS! of Eq. ~4! by its average over
the thickness of the horizontal films. Equation~4! now reads

h0~c22¹h
2!V5“dH$c%/dc3“c, ~5!

whereh0 is the viscosity, and a constant multiplicative fact
2c2 arises from the mentioned averaging of]z

2 , ¹h
2 being

the horizontal Laplacian,¹h
25]x

21]y
2 . Since ¹h

2 is small
when compared to]z

2 in the case of thin films becausec2

}p2/l 2 (l is the vertical thickness of the system! with the
proportionality constant depending on the vertical bound
2924 ©2000 The American Physical Society
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conditions, we neglect the¹h
2 term on the LHS of Eq.~5! in

the following stability analysis.
Let us introduce the vertical vorticity potential,z, defined

by ẑ•V52¹2z ( ẑ being the unit vector along thez axis! so
that v5(]yz,2]xz). Also hereafter we will use the units i
which u5K5L51. Explicitly written, our equations then
read

] tc5¹2~2tc1c32¹2c!2Bc2~v•“ !c,
~6!

¹2z5gẑ•@“~¹21B¹22!c3“c#,

with g51/(c2h0), and¹22c(r ) is a short-hand notation fo
2*dr 8G(r2r 8)c(r 8). In passing we remark that general
for BCP with asymmetric chains thec ’s in the long-range
interaction term in the free energy~3! are replaced by
dc(r )[c(r )2c̄, where c̄ is the spatial average ofc;c̄
50 for symmetric chains. Therefore thek50 mode~i.e., the
Fourier componentsck for k50! is a constant of motion
(ck5050) with the form of the first equation of Eq.~6!, and
the order parameterc is a conserved quantity.

We here employ the method of phase dynamics@8# to
seek slowly-varying~slow reorientation of the lamellae ove
large angles! and finite-amplitude~far from threshold! lamel-
lar solutions to the governing equations~6!. To that end one
introduces slow space and time variables

X5hx, Y5hy, T5h2t, ~7!

and a slow phase variable

Q~X,Y,T!5hu~x,y,t !. ~8!

The only small~dimensionless! parameterh in the analy-
sis is the ratio of lamellar size to system size, and the lo
wavevector of lamellae is given by

k~X,Y,T![“u5“XQ, ~9!

whereX5(X,Y), andk is O(1). Wedevelop the solution as
an expansion inh:

c5c01hc11•••,

v5v01hv1•••, ~10!

z5z01hz11•••,

where c i5c i„u5h21Q(X,Y,T),X,Y,T…, etc, are 2p-
periodic in u. One may then match the result toO(h2).
Since the calculation may be carried out in exactly the sa
way as in Refs.@4,9#, we skip details here.

At order h0, we obtain the equation

05Ôc0[~tk2]u
21k4]u

41B!c02k2]u
2c0

3 ~11!

giving the unperturbed solutionc0. At O(h), we obtain the
linear equation forc1,

dÔc152F1 , ~12!

wheredÔ is the operator obtained by linearizing the opera
Ô aboutc0,
al

e

r

dÔ5tk2]u
21k4]u

41B2k2@3c0
2]u

2112c0~]uc0!]u

16c0~]u
2c0!16~]uc0!2#. ~13!

The right-hand side of Eq.~12! contains all terms involving
c0,

F15QT]uc01tD1]uc01k2]u
2D1]uc01D1]uk2]u

2c0

212c0k•~“c0!]uc023c0
2D1]uc01~v1•k!]uc0 .

~14!

Here and hereafter“[“X , and D1[2k•“1(“•k), QT
[]TQ. For slowly varying component of the vertical vortic
ity potential, the only contibution to the flowv at O(h) is the
part with no dependence on the fast scaleu,

v050, v15~]Yz0 ,2]Xz0!. ~15!

We find theu-independent components of the vorticity p
tential z05z0(X,Y) by averaging theO(h2) of the vorticity
equation overu to give

¹2z052gẑ•$k3““•@k^~]uc0!2&#2Bk

3“@k24
“•~k^~]u

22]uc0!2&!#%. ~16!

Here the scalar product̂ a,b& is defined by ^a,b&
5(2p)21*0

2pduab, and ^a2&5^a,a&. The operator]u
22 is

defined by

]u
22f~u!52E du8G* ~u,u8!f~u8! , ~17!

where ]u
2G* (u,u8)52d(u2u8). The phase equation fo

k(Q) arises as solvability condition for Eq.~12!, ^e0
† ,F1&

50, wheree0
† is the zero-eigenvalue eigen function of th

adjoint todÔ. At this stage we employ an approximation
use a single-mode truncation ofc0 as

c05A cos~k•x!. ~18!

The one-mode truncation has been shown to be a good
proximation in the stability analysis of a large class of mod
equations in thermal convection@9#. With the one-mode
truncation,e0

† is simply given bye0
†5sin(k•x). Then we

obtain the phase equation for small long-wavelength per
bations from uniform lamellae with wavevectork5(k,0),

v21~k!~QT1dQT!5D i~k!QXX1D'~k!QYY. ~19!

Here

D'~k!5~1/2!A2k0
2~K22K22!,

D i~k!5
2

3
k0

4 K413

K2 F e2
3K822K626K215

K2~K413!
G , ~20!

with

v21~k!5A2/2, A25~4k0
2/3!~e122K22K22!,

~21!
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2926 PRE 61Y. SHIWA
andK[k/k0 ; k0 ande are, respectively, a critical wavenum
ber and a reduced distance to criticality given by

k05B1/4, e5~t22k0
2!/k0

2 . ~22!

The characteristic feature of the phase equation~19! is the
term dQT[k]Yz0, which is absent without hydrodynami
interactions, and

dQT52v~k!a~k!QYY2v~k!b~k!¹22QXXYY, ~23!

where

a~k!5~1/4!A4gm~K22K22!,
~24!

b~k!52~2/3!A2k0
2gm~K22K22!2,

with gm[gk0
2. In order to derive Eq.~23!, we have used the

fact that the Green’s function for the operatorL:Ly(u)
5d2y(u)/du2 and the periodic boundary conditionsy(0)
5y(2p),y8(0)5y8(2p) is given by@10#

G* ~u,u8!5
p

6
2

1

2
uu2u8u1

1

4p
~u2u8!2. ~25!

Therefore the hydrodynamic coupling leads to the modifi
phase-diffusion equation of the form

v21~k!QT5D i~k!QXX1D̃'~k!QYY1b~k!¹22QXXYY,
~26!

whereD̃'(k)5D'(k)1a(k).
The growth rate (L) of a small perturbation of wave vec

tor Q5Q(cosf,sinf) about a straight lamella ofk5(k,0)
~hencef is the perturbation angle to the layer normal! is
determined by a linear stability analysis of Eq.~26!:

L/@Q2v~k!#52@D i~k!cos2f1D̃'~k!sin2f

1b~k!cos2f sin2f#. ~27!

For fluctuations withf50, the longitudinal Eckhaus~EC!
instability @2# occurs ifD i(k),0, and this stability boundary
is unchanged by the hydrodynamic coupling (gmÞ0). For
f5p/2, the transverse zigzag~ZZ! instability develops if
D̃'(k),0. The vorticity generated by the hydrodynamic i
teraction acts as a stabilizing influence on the ZZ instabi
inside the neutral stability region whereA2(k).0. However,
the influence is not strong enough to change the stab
boundary as compared to the case ofgm50. ForQ at some
orientation 0,f,p/2, the vorticity is destabilizing becaus
b(k),0, and a new instability is induced. Namely, the loc
changes in lamellar spacing (QxÞ0) coupled with lamellar
bending (QyÞ0) enhance the bulges. This flow-driven inst
bility may be identified as the skewed-varicose~SV! type, a
familiar instability in thermal convections at low Prand
numbers.

In this connection the following remark may be in orde
The BCP~or RB! system consisting of fully formed lamella
~or rolls! has the same symmetry as a smectic liquid crys
and we thus expect similar behaviors in the latter system
fact, two-component smecticsA undergoing a demixing tran
sition to the two coexisting smectic phases bear some res
d

y

ty

l

-

.

l,
In

m-

blance, where the elastic degrees of freedom~the layer dis-
placement fluctuations! are coupled to the concentration. I
terms of linearized smectic hydrodynamics, Sigaudet al.
@11# interpreted the fastest growing mode of the tw
component smectics quenched below the spinodal as ar
from the instability of a diffusive baroclinic mode. The laye
displacement in this mode exhibits a novel pattern similar
Fig. 3~a! below, and the angle between the most unsta
wave vector and the layer normal is predicted to be nearp/4
@see the comment on Eq.~28! below#. Therefore this appear
to be the exact analogue of the SV instability that we ha
described.

Studying in detail the growth rate~27!, we find that the
SV instability grows continuously out of the EC instabilit
both for increasinge and for increasinggm . For a givene,
the hydrodynamic interactions withgm.gc(e) generate the
SV instability, whereas forgm,gc , the EC instability pre-
empts the SV instability. Figure 1 shows the variation ofgc

FIG. 1. Thegc as a function ofe. For a givene, the hydrody-
namic coupling with strengthgm.gc generates the skewed
varicose instability.

FIG. 2. Stability boundary forgm510 as a function ofe and
the reduced wave numberK ~ZZ: zigzag; SV: skewed-varicose; EC
Eckhaus; N: neutral instabilities!. The plus and minus signs on e
ther side of a curve show where the growth rate~L! is positive
or negative; hence only the region labeled with two minus sig
is stable. Although it is illegible in the figure on this scale, t
EC instability preempts the SV instability fore,0.0044 and
1,K,1.02.
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with e. A representative stability diagram~we used the value
gm510) is summarized in Fig. 2, showing the various s
bility boundaries as a function ofe and the scaled wave
vectorK. The stable region is bounded mostly by the ZZ a
SV instabilities for this value ofgm .

We have undertaken numerical simulations of the coup
equations~6! to provide the checks on the analytical pred
tions of our stability analysis. The numerical results to
presented were obtained by discretizing both space and
derivatives in equations~6!. Euler’s method was used to dis
cretize the time derivative and the discrete gradient was c
ter difference evaluated. The discrete Laplacian used the
called CDS Laplacian@12# including contributions from
nearest and next-nearest neighbors with relative weight 1
1/2. A standard fast-Fourier transform technique solved
vorticity equation. We take as initial condition

c~ i , j !5cos~1.155k0iDx!10.5 cos@0.5~ iDx10.8j Dy!#,
~28!

where the integers (i , j ) represent the coordinates (x,y);
x5 iDx,y5 j Dy. We use t51, B50.189, g523 ~hence
gm510, k050.66 and e50.3) for our simulations per-
formed with periodic boundary conditions. The grid spaci
of Dx5Dy51.0 and the time step sizeDt50.01 are chosen
to avoid numerical instabilities.@The value 0.8 in the above
equation corresponds to the value of tan(Qy /Qx) which
maximizes the growth rate for the SV instability for the p
rameters chosen for our simulation.# Since we are outside o
the stability region~see Fig. 2!, we expect to observe the S
instability. In Fig. 3~a! we exhibit the initial phases of the SV
instability. It is evident that the mean drift field caused by t
vorticity coupling enhances the necking of phase conto
We also observed the ZZ instability with the other approp
ate choice of initial conditions@Fig. 3~b!#, and all our simu-
lations were fully quantitatively consistent with analytic
theory.

At this juncture we recall recent surprising observatio
of spiral or target patterns in RB convection@13#. These
intriguing patterns were observed in a parameter reg
where the familiar state of parallel-roll pattern is known to
stable. Although a full theoretical understanding of t
mechanism responsible for these patterns is lacking, it is
rently postulated that the patterns are due to the large-s

FIG. 3. ~a! Initial phases~at 500 time step! of the skewed-
varicose instability in the simulation on a grid of 32332 mesh
points. The horizontal axis is thex axis. Contour lines are equall
spaced and represent the value ofc~ucu,1.1!; ~b! Here the ZZ as
well as SV modulations are visible. The initial state for the evo
tion is chosen to bec( i , j )5cos(0.95k0iDx)1cos(0.1j Dy), and all
other parameters used are the same as in~a! while ucu,0.67.
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flow ~so-called mean flow! generated by the deformation o
convective rolls@14#. Realizing that the mean flow arise
when vertical vorticity is driven by roll curvature and amp
tude modulations@15#, and considering the similarities be
tween RB convection and BCP, we explore parallels betw
these two systems. A natural question then is whether sp
or targets are observed in BCP. Below we suggest by me
of numerical simulations that these patterns occur for str
hydrodynamic coupling and large systems.

We have carried out simulations based on Eqs.~1, 5!. In
order to allow easier exploration of the long-time regime
pattern formation, we employed the cell-dynamical-syst
~CDS! method@16,5# on square lattices with periodic bound
ary conditions. For Eq.~1!, i.e., the first of equations~6!, we
solved the following CDS model:

c~n,t11!5c~n,t !2^^@J~n,t !&&1J~n,t !2B̃c~n,t !

2v~n,t !•@“#dc~n,t !, ~29!

where J5A tanhc1D(^^c&&2c)2c, corresponding to the
effective chemical potential2dH/dc. For the strength of
the long-range interaction we have used the different no
tion (B̃) in Eq. ~29! from the TDGL model, since in com
paring Eqs.~6! and ~29! a suitable rescaling of variables
necessary to allow for the different units used in CDS a
TDGL dynamics. In Eq.~5! all the operators are replaced b
their discrete counterparts. Explicitly, this gives us

~c22@¹2#d!@¹2#dz5gẑ•$@“#d~D~^^c&&2c!1B̃@¹22#dc!

3@“#dc% . ~30!

In the above the double angular brackets denote an iso
pized average of a neighborhood of cells, and@* #d denotes
the discrete version of the enclosed operator; the disc

-

FIG. 4. Patterns at 104 time step after random initial condition
in a system of size 2563256 showing the variation of patterns a
the hydrodynamic coupling strength is changed;g50.25 ~a!, 2.5
~b!, 25 ~c!, and 50~d!. The bright regions denote positive values
c while the dark ones negativec.
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2928 PRE 61Y. SHIWA
gradient was center difference evaluated and for the Lap
ian we used the identification@12# @¹2#d* 53(^^* &&2* ).
The operator@¹22#d is the inverse of the discrete Laplacia
@¹2#d , and is computed using fast Fourier transform te
niques. The parameters used wereA51.26, B̃50.02, D
50.45 andc252 at variable values ofg. Initial conditions
were a random distribution between60.1. We have studied
several systems of size 642 to 2562 to investigate the size
dependence of possible patterns. The conclusions that we
draw from the simulations are~i! The spirals are found to
exist only for large hydrodynamic coupling.~ii ! Spirals and
target can coexist.~iii ! The spiral disappears in a small sy
tem of size 642, and the large system was essential for
existence of spirals. In Fig. 4 we demonstrate typical sn
-

ce
c-

-

an

e
-

shots from the simulations, showing the variation of patte
as the hydrodynamic coupling strength is varied. These
servations are quite similar to those features which have b
revealed in spiral pattern formation in RB convection. A
in the latter case, however, we are not able to identify
fundamental reason why the spirals disappear in the sm
systems.

In summary, we have considered effects of hydrodynam
interactions upon lamellar formation kinetics of thin bloc
copolymer films. The stability analysis shows that the lam
lar structure undergoes the skewed-varicose instability in
presence of the hydrodynamic interaction. We have a
numerically demonstrated the existence of spiral and ta
patterns.
.T.
,

ell,

,
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