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Hydrodynamic interactions in microphase separation of block copolymer films:
Stability and spirals
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Effects of hydrodynamic interactions in the formation of lamellar patterns in thin block copolymer films are
studied. We derive the phase diffusion equation, and the stability analysis reveals the development of the
skewed-varicose instability. Moreover, we predict by means of numerical simulations that the hydrodynamic
flow induces the spiral and target patterns.

PACS numbgs): 61.41+e, 47.20-k, 47.54+r, 64.60.Cn

In the field of block copolymer$BCP9, the existence of e u K
lamellar patterns has been abundantly studied and is now HW}:J dr( —§¢2+ Z¢4+ §(V¢)2
fairly well understood1]. However, the growth kinetics of
the formation of such patterns is much less understood either B , ) )
theoretically or experimentally. This situation bears close +§f f drdr’g(r,)G(r,r)y(r',v, 3
analogies with the convectivgoll or stripe pattern forma-

tion in a Rayleigh-Beard (RB) system[2]. For example, the \yhere G is the Green’s function for the Laplace equation,
physical mechanism underlying an apparent dynamical scalvfG(r,rr): —8(r—r'). TheH{y} is essentially the effec-
ing regime has not been clearly identified in either system. tjye Hamiltonian first derived by Leibler and subsequently
In fact, the analogy is not just superficial in these twodiscussed by Ohta and Kawas&i. The positive constants
pattern forming systems, but similar kinetic behaviors can b  r u andK are phenomenological parameters, &{d-0)
expected in view of the similarity between the equationsrepresents a long-range repulsive interaction and is inherent
governing the dynamics of lamellae and the Swift-in the microphase separation. The second term on the right-
Hohenberg model of RB convection. As examplé$:the  hand side of Eq(1) represents the fluid motion. The velocity
dynamical growth of the characteristic length scale in bottfield v(r,t) is induced by the hydrodynamic interactions es-
systems is described by the same growth expori@jigii)  tablished by the spatially nonuniform distribution of chemi-
the stability of a lamellar structure and a convective rollcal potential, and is assumed to satisfy the incompressibility
gives rise to a common phenomenolddy. In this paper we condition V-v=0. Accordingly the operatol appears in
explore effects of hydrodynamic interactions in microphaseEd. (2) to select a transverse component of the vector field it
separation of BCP, showing another fascinating connectiof§ applied to; thep, and v are the monomer density and the
between the two systems. We predict the appearance &fnematic viscosity. It is more convenient to take the curl of
skewed-varicose instabilities and spiral-target patterns in thifFd: (2) to consider the vorticity equatio¥=V Xv),
BCP films by means of both analytical and numerical inves-

tigations. d o) o oH{y}

We consider only ar\-B diblock copolymer with equal- Pol 5 ¥V )Q_V S XV @
length subchains, in which an ordered layered phase with

alternatingA and B rich domains(lamellag is formed. The Under the assumption that the time scalevois much
model to describe its dynamics is the following time- shorter than that ofy (the so-called “adiabatic limit” or
dependent Ginzburg-LanddWDGL) equationg5]: “passive vorticity case’, we setd,=0 in (Eq. 4 as a first

good approximation. As a second simplification, which is
specific to the thin BCP films, we follow Zippelius-Siggia

I Ly2 oH{y} vV 1 and Mannevillg7] to replace the three-dimensional Laplac-
ot oY (V-V)ib, (@ jan on the left-hand sidé_HS) of Eq. (4) by its average over
the thickness of the horizontal films. Equati@h now reads
a ) SH{y} 10(C?=VEQ=V SH{y}/ 5y X V 4, (5)
Po E—VV v=—T-| 4V 50| (2)

where ), is the viscosity, and a constant multiplicative factor

—c? arises from the mentioned averaging djf, V2 being
Here #(r,t) is the scalar order parameter at a space timdhe horizontal LaplacianyV 2= 93+ ﬁi- Since Vi is small
point (r,t) chosen to be the local monomer concentrationwhen compared t@? in the case of thin films becaus?
difference of A and B species. The free energy functional «x?//? (/ is the vertical thickness of the systemith the
H{y} is given by proportionality constant depending on the vertical boundary
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conditions, we neglect th§ﬁ term on the LHS of Eq(5) in 50= Tk2¢92+k4a4+B—k2[3¢§&§+12¢0(&9¢0)(99
the following stability analysis.
Let us introduce the vertical vorticity potentidl, defined + 6:,00((9 o) +6(3d4100)2]. (13

by z.Q=-V¥ (2 being the unit vector along theaxis) so
thatv=(dy{,— d«{). Also hereafter we will use the units in
which u=K=L=1. Explicitly written, our equations then Yo,

d
rea F1= 0190+ 7D 1910+ k295D 13 b0+ D13K2 0510
w2 3_v2_na
Y=V gty = V) —BY— (V- V), — 1240k - (V h0) 3 gtho— 355D 10 gtho+ (V1 - K) d g

(6)
V2;=gz-[V(V2+BV 2)yx V], (14)

The right-hand side of Eq12) contains all terms involving

with g=1/(c?7o), andV ~2y(r) is a short-hand notation for Here and hereafteV =Vy, and D;=2k-V+(V-k), O1
—fdr'G(r—r")y(r"). In passing we remark that generally _E&T(B. FQr slowly varying cor_nponent of the verUca] vortic-
for BCP with asymmetric chains th¢'s in the long-range ity potential, the only contibution to the flowat O(7) is the
interaction term in the free energ{®) are replaced by Part with no dependence on the fast scale

Sy(r)=u(r)— 1// wherez/; is the spatial average of; ~0 — (g — 3 15
=0 for symmetric chains. Therefore the=0 mode(i.e., the Vo=0, Vv1=(dv{o,~ IxLo)- (15
Fourier componentg), for k=0) is a constant of motion \ye find the g-independent components of the vorticity po-
(#x=0=0) with the form of the first equation of E(6), and  tential 7,=¢,(X,Y) by averaging the©(»?) of the vorticity

the order parametep is a conserved quantity. equation ovem to give
We here employ the method of phase dynani@kto
seek slowly-varyingslow reorientation of the lamellae over V2(,= —gi{kaV [k((dp100)2)]— Bk
large anglesand finite-amplitudéfar from thresholglamel-
lar solutions to the governing equatiof®. To that end one X VK4V - (k((9,%091h0)°)]}. (16

introduces slow space and time variables
) Here the scalar producta,b) is defined by (a,b)
X=nx, Y=ny, T=n%, (7)  =(2m)"'f2"deab, and(a?)=(a,a). The operatord, ? is

and a slow phase variable defined by

OXY, T)=76(x.y.1). ®) a;2¢<6>=—f d6o'G*(6,0") ('), 17

The only small(dimensionlessparametery in the analy-
sis is the ratio of lamellar size to system size, and the locavhere 95G* (6,0')=—8(6—6'). The phase equatlon for
wavevector of lamellae is given by k(®) arises as solvability condition for Eq12), (eO,F1>
=0, wheree0 is the zero-eigenvalue eigen function of the

adjoint to 50. At this stage we employ an approximation to

whereX =(X,Y), andk is O(1). Wedevelop the solution as US€ @ single-mode truncation ¢ as
an expansion iny:

k(X,Y,T)=V 9=V, (9)

o=Acogk-X). (18
=i+ +
Y=ot mih The one-mode truncation has been shown to be a good ap-
V=Vot+ Vg -, (10) proximation in the stability analysis of a large class of model
equations in thermal convectiof®]. With the one-mode
(=Cot iyt -, truncation, e} is simply given byel=sink-x). Then we

obtain the phase equation for small long-wavelength pertur-
where ¢;=y;(6=7 'O(X,Y,T),X,Y,T), etc, are 2r-  bations from uniform lamellae with wavevector= (k,0),
periodic in 6. One may then match the result @(7?).
Since the calculation may be carried out in exactly the same o YK)(O1+ 601) = D|(K)Oxx+D,(k)Oyy. (19
way as in Refs[4,9], we skip details here.

At order 7°, we obtain the equation Here
0=Ouo=(7k22+ K%+ B) hg— k2243 (1D) D, (k)= (12 A%G(KZ—K™?),
giving the unperturbed solutioft,. At O(7), we obtain the 2 K4+3 3K8—2K®—6K2+5
linear equation fory,, H(k) K2 € K2(K*+3) , (20
80y, =—Fy, 12 with

wheresO is the operator obtained by linearizing the operator 0 XK)=A%2, A?=(4k23)(e+2—K2—K™?),
O aboutyg, (21
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andK=k/ky; ko ande are, respectively, a critical wavenum-

ber and a reduced distance to criticality given by 1y
ko=B¥, e=(7—2k3)/K3. (22)
The characteristic feature of the phase equati® is the 0.1}

term 60 1=Kkdy{,, Which is absent without hydrodynamic
interactions, and

507= — w(K a(k)Oyy— (K BKY Oxyy, 23 o 01l

where

a(k)=(1AA*gn(K*=K™?),

| — n e |

24 '
B(K) = — (213) A%kigm(KZ—K~2)?, 24 1 gc 10

with nggké. In order to derive Eq(23), we have used the F_IG. 1. Thegc as a function ofe. For a givene, the hydrody-
fact that the Green's function for the operat6rly(¢)  namic coupling with strengthgn>g. generates the skewed-
=d2y(6)/d6? and the periodic boundary conditiong0)  Varicose instability.

=y(2m),y' (0)=y'(27) is qi by[10 . .
y(2m),y'(0)=y'(2) is given by[10] blance, where the elastic degrees of freedtime layer dis-

p— 1 placement fluctuationsare coupled to the concentration. In
G*(G,G’)=g—§|6’— 6”|+E(0— 0')%. (25  terms of linearized smectic hydrodynamics, Sigaetchl.
[11] interpreted the fastest growing mode of the two-
Therefore the hydrodynamic coupling leads to the modifieeomponent smectics quenched below the spinodal as arising

phase-diffusion equation of the form from the instability of a diffusive baroclinic mode. The layer
displacement in this mode exhibits a novel pattern similar to
w_l(k)T:DH(k)®XX+BL(k)®YY+ﬂ(k)V_2XXYY* Fig. 3@ below, and the angle between the most unstable

(26)  wave vector and the layer normal is predicted to be ngér
[see the comment on E8) below]. Therefore this appears

wheref)i(k):Dl(k)Jra(k). to be the exact analogue of the SV instability that we have
The growth rate 4) of a small perturbation of wave vec- described.
tor Q= Q(Cos¢,sin¢) about a Straight lamella d{:(k,O) Studylng in detail the grOWth rate€7), we find that the
(hence ¢ is the perturbation angle to the layer norima SV instability grows continuously out of the EC instability
determined by a linear stability analysis of Eg6): both for increasings and for increasing,,. For a givene,
the hydrodynamic interactions witly,>g.(€) generate the
A[Q%w(k)]= —[D”(k)co§¢+ ﬁi(k)sin2¢ SV instability, whereas fog,,<g., the EC instability pre-

empts the SV instability. Figure 1 shows the variatiorgpf
+ B(k)cog ¢ sirf¢]. (27) P v o8

For fluctuations with¢=0, the longitudinal Eckhau$EC)
instability [2] occurs ifD (k) <0, and this stability boundary
is unchanged by the hydrodynamic coupling,¢0). For
¢=ml2, the transverse zigza@Z) instability develops if
D, (k)<0. The vorticity generated by the hydrodynamic in-
teraction acts as a stabilizing influence on the ZZ instability
inside the neutral stability region whef€(k)>0. However,
the influence is not strong enough to change the stability
boundary as compared to the casggpf=0. ForQ at some
orientation 6<¢$<w/2, the vorticity is destabilizing because
B(k)<0, and a new instability is induced. Namely, the local
changes in lamellar spacing(+# 0) coupled with lamellar
bending Q,# 0) enhance the bulges. This flow-driven insta-
bility may be identified as the skewed-varicd&V) type, a
familiar instability in thermal convections at low Prandtl o o Stability boundary fog,,=10 as a function of and
numberls. . . . the reduced wave numbir(ZZ: zigzag; SV: skewed-varicose; EC:
In this connection the following remark may be in order. ckhaus; N: neutral instabilitigsThe plus and minus signs on ei-
The BCP(or RB) system consisting of fully formed lamellae ther side of a curve show where the growth réte is positive

(or rolls) has the same symmetry as a smectic liquid crystaler negative; hence only the region labeled with two minus signs
and we thus expect similar behaviors in the latter system. Iis stable. Although it is illegible in the figure on this scale, the

fact, two-component smectigsundergoing a demixing tran- EC instability preempts the SV instability foe<0.0044 and
sition to the two coexisting smectic phases bear some resemi<K<1.02.
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v v/ QW w ®) flow (so-called mean floyvgenerated by the deformation of
convective rolls[14]. Realizing that the mean flow arises
‘ when vertical vorticity is driven by roll curvature and ampli-
tude modulationg15], and considering the similarities be-
tween RB convection and BCP, we explore parallels between
these two systems. A natural question then is whether spirals
or targets are observed in BCP. Below we suggest by means
of numerical simulations that these patterns occur for strong

hydrodynamic coupling and large systems.

‘ (\®® /\ (\ We have carried out simulations based on E
Gs5). In

FIG. 3. (a) Initial phases(at 500 time stepof the skewed- order to allow easier exploration of the long-time regime of
varicose instability in the simulation on a grid of 8332 mesh  pattern formation, we employed the cell-dynamical-system
points. The horizontal axis is theaxis. Contour lines are equally (CDS) method[16,5] on square lattices with periodic bound-
spaced and represent the valueydfi/<1.1); (b) Here the ZZ as  ary conditions. For Eq(1), i.e., the first of equation&), we
well as SV modulations are visible. The initial state for the evolu-solved the following CDS model:
tion is chosen to b&(i,j)=cos(0.9%,i Ax) +cos(0.JAy), and all
other parameters used are the same ds)imhile |//<0.67. (N t+1)=g(n,t)— ([ J(n,0))+ T(n,t) —Buy(n,t)

(a

=

with e. A representative stability diagratwe used the value —Vv(n,t)-[V]ge(n,1), (29
On=10) is summarized in Fig. 2, showing the various sta- - o .
bility boundaries as a function o and the scaled wave where 7= Atanhy-+D(({y))) ) ~4, corresponding to the

vectorK. The stable region is bounded mostly by the ZZ andeffective chemical potentiat- H/S¢. For the strength of
Y instébilities for this value of the long-range interaction we have used the different nota-
m- RN o

We have undertaken numerical simulations of the coupledion (B) in Eq. (29) from the TDGL model, since in com-
equations(6) to provide the checks on the analytical predic- Paring Eqs.(6) and (29) a suitable rescaling of variables is
tions of our stability analysis. The numerical results to ben€cessary to allow for the different units used in CDS and
presented were obtained by discretizing both space and timg?GL dynamics. In Eq(5) all the operators are replaced by
derivatives in equationés). Euler's method was used to dis- their discrete counterparts. Explicitly, this gives us

i

cretize the time derivative and the discrete gradient was cen- , 5 o o O,
ter difference evaluated. The discrete Laplacian used the s6¢” [V 1a)[V1a¢=092-{[V]a(D(((¢)) — )+ B[V “1a¢))
nearest and next-nearest neighbors with relative weight 1 and
1/2. A standard fast-Fourier transform technique solved thén the above the double angular brackets denote an isotro-
. ) ) _ the discrete version of the enclosed operator; the discrete
(i,])=cog1.15%,iAx)+0.5co$0.5iAx+0.8jAy)],
2 DA EZS
. y . . B
where the integersi(j) represent the coordinatex,y); ?
x=iAx,y=jAy. We use r=1, B=0.189, g=23 (hence ) U
Om=10, kg=0.66 and e=0.3) for our simulations per- 1 \) 4
{

of Ax=Ay=1.0 and the time step sizkt=0.01 are chosen =
to avoid numerical instabilitiegThe value 0.8 in the above
maximizes the growth rate for the SV instability for the pa- =N Q@%
rameters chosen for our simulatip®ince we are outside of
vorticity coupling enhances the necking of phase contours. '
We also observed the ZZ instability with the other appropri- (&)
lations were fully quantitatively consistent with analytical % ¢ 1
theory. »© ® @
of spiral or target patterns in RB convecti¢td3]. These ‘ (@ m '
intriguing patterns were observed in a parameter region |G, 4. Patterns at fQiime step after random initial conditions
stable. Although a full theoretical understanding of thethe hydrodynamic coupling strength is changege:0.25 (a), 2.5
mechanism responsible for these patterns is lacking, it is cutb), 25 (c), and 50(d). The bright regions denote positive values of

called CDS Laplacian12] including contributions from X[V ]} . (30)
vorticity equation. We take as initial condition pized average of a neighborhood of cells, 4ndy denotes
(a)
formed with periodic boundary conditions. The grid spacing % =
(5N ﬁ
equation corresponds to the value of @p(Q,) which ==
7 N
the stability region(see Fig. 2, we expect to observe the SV w’ ¥, “ NN SO =27 \
instability. In Fig. 3a) we exhibit the initial phases of the SV = U \'@‘ ()
instability. It is evident that the mean drift field caused by the ) V’P
' = S (
ate choice of initial conditionfFig. 3(b)], and all our simu- c ]
At this juncture we recall recent surprising observations
where the familiar state of parallel-roll pattern is known to bein a system of size 256256 showing the variation of patterns as
rently postulated that the patterns are due to the large-scalgwhile the dark ones negatiug
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gradient was center difference evaluated and for the Laplachots from the simulations, showing the variation of patterns
ian we used the identificatiofil2] [V2]g* =3({(*))—*).  as the hydrodynamic coupling strength is varied. These ob-
The operatof V2] is the inverse of the discrete Laplacian servations are quite similar to those features which have been
[V2]4, and is computed using fast Fourier transform techrevealed in spiral pattern formation in RB convection. As
nigues. The parameters used weke-1.26, B=0.02, D in the latter case, however, we are not able to identify a
=0.45 andc?=2 at variable values of. Initial conditions  fundamental reason why the spirals disappear in the smaller
were a random distribution betweer0.1. We have studied systems.

several systems of size 640 256 to investigate the size In summary, we have considered effects of hydrodynamic
dependence of possible patterns. The conclusions that we carteractions upon lamellar formation kinetics of thin block
draw from the simulations ar@) The spirals are found to copolymer films. The stability analysis shows that the lamel-
exist only for large hydrodynamic couplingi) Spirals and lar structure undergoes the skewed-varicose instability in the
target can coexistiii) The spiral disappears in a small sys- presence of the hydrodynamic interaction. We have also
tem of size 64, and the large system was essential for thenumerically demonstrated the existence of spiral and target
existence of spirals. In Fig. 4 we demonstrate typical snappatterns.
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